使用隔热石墨复合材料提高移动电子产品的 系统性能

Mitchell Warren¹, Julian Norley², John Allen¹, Jonathan Taylor², Lindsey Keen¹

 W. L. Gore & Associates, 201 Airport Rd, Elkton MD, 21921 USA mwarren@wlgore.com, jallen@wlgore.com, lkeen@wlgore.com 2. NeoGraf Solutions, LLC 11709 Madison Ave., Lakewood, Ohio 44133 USA jnorley@neograf.com, jtaylor@neograf.com

摘要

将具有超高扩散能力的石墨片和具有超低导热系数的隔 热片相结合而成的复合热解决方案,应用于谷歌Pixel 3XL 手机的烤机测试中,与石墨、隔热材料和空气这些单一 方案相比,复合方案可以将稳态表面触摸(皮肤)温度 (T₅)降低3.2℃,同时其最高结温(T₁)只增加了不到1℃。在 COMSOL中模拟了轴对称传导模型,确定了在厚度相当 (~350μm)的情况下五种独特的热解决方案的表面温度降 低趋势。其中四种解决方案在谷歌Pixel 3XL烤机测试中进 行了试制、测试和验证。该复合材料最大限度地降低了 T_s,可用来提高稳态系统性能,同时保持对用户安全的表 面温度。稳态3DMark – Sling Shot Extreme 评测分数从 3401增加到3823,稳态系统性能提高了12.4%。通过采 用稳态热流和厚度测试来测量隔热材料的贯穿平面导热系 数,并采用热扩散率测试来测量石墨的平面导热系数,从 而将设备性能增强与材料性能联系起来。通过稳态热扩散 测试来验证石墨的平面导热系数,此实验表明了100 μm 高性能石墨片的扩散能力比100 μm合成石墨片和天然石 墨片高出30%左右。

关键词

石墨、超高扩散能力、隔热材料、超低导热系数、复合材料、散热材、导热系数、厚度、表面触摸(皮肤)温度、热点、结温、环境温度、稳态、谷歌Pixel 3XL (Pixel)、 片上系统(SoC)、3DMark - Sling Shot Extreme、评测分数、系统性能、用户安全。

术语

- k 导热系数(W/m·K)
- t 厚度(mm, μm)
- **T**_s 表面触摸(皮肤)温度(K, °C)
- **T**, 设备结温(K, °C)
- ΔT 温度变化量(K, °C)
- **q"** 热通量(W/m2)
- R" 热阻(K·m2/W)
- t-ΔT 固有热扩散能力(μm·K)

简介

散热材(石墨)和隔热材(空气、聚合物)已被广泛而 普遍地用于解决移动电子行业的热挑战。随着设备处理功 率更高、外形更薄逐渐成为标准要求,移动电子产品面临 着一个更为紧迫的用户安全问题,即表面触摸(皮肤)温 度(T_s)。

美国保险商实验室(UL)的T_s指南基于特定温度和持续时间 的直接皮肤接触,¹这份指南受到整个移动电子行业的认 可。以前,被动热解决方案能够将T_s降低到低于规范的水 平,但许多常见的材料,如空气和合成石墨,都存在着 技术的局限性。²当没有可以保持系统性能的热解决方案 时,被普遍采用的一个解决方案就是对处理器进行功率调 节(降频),而这可能会使系统功率降低50%。³

在温度相对较低(< 100 °C)且没有主动散热装置的轻薄型移动电子产品中,传导是设备内部传热的主要方式⁴;相

对而言,我们认为内部对流和辐射可以忽略不计,因此本 文对此不作进一步讨论。

一维热传导的傅立叶定律如等式(1)所示,理论温度变化量 (ΔT)与传热媒介的热阻(R")成正比。

(1)
$$q'' = \frac{\varDelta T}{R''} \left(\frac{W}{m^2}\right)$$

假设给定系统中的热通量(q")恒定,ΔT会随R"变化,R"被 定义为厚度(t)与导热系数(k)的比值。

(2)
$$R'' = \frac{t}{k} \left(\frac{K \cdot m^2}{W} \right)$$

重新组合排列等式(1)和(2),可以将T₅看作是结温(T_i)、 t、k和q"的函数,如等式(3)和所附的一维热阻网络所示 (图1)。在q"和t恒定的受约束系统中,可以通过降低k 来降低T₅。

当系统扩展到传热的三个维度(图2)时,平面热扩散会 影响最终的T_s。在给定厚度和面积的材料中,平面和贯穿 平面导热系数对热量的最终扩散都有重要的影响。我们将 超低(贯穿平面)导热系数的隔热材料与超高扩散能力的 石墨相结合,打造一种热复合材料解决方案。该方案与轻 薄型移动电子产品中热管理所用的现有材料相比,具有优 异的热扩散性能。

图2:三维热阻网络。热量从T₁(设备中心)向多个方向移动, 包括向触摸表面T_s移动。

材料选择

GORE[®]隔热膜(W. L. Gore & Associates, Inc.)是一种隔热 材料(简称为"隔热材料"),具有低于空气的极低导热 系数,呈薄片状(100 μm和250 μm)。NeoNxGen[™]热 管理解决方案(NeoGraf Solutions, LLC)包括一种厚片石墨 (70μm至270μm),具有超高的固有热扩散能力(简称 为"高性能厚石墨")。

将单独的隔热材料层和石墨层放置在热源和触摸表面之间 时,它们都可以单独降低T_s。当可用面积与表面热点面积 的比值约为一比一时,单独采用隔热材料是理想解决方 案。隔热材料是相对各向同性的,而石墨表现出较高的各 向异性特性,有利于材料平面上的热传导。当可用面积与 表面热点面积的比值接近二比一或更大时,这种作用将会 影响T_s降低;在这些系统结构中,隔热材料可以与石墨相 结合,以提高其有效的热扩散能力。可用面积与表面热点 面积之比的示意图如图3所示。

图3:示意图显示可用面积与表面热点面积之比的横截面图。 面积与半径平方成正比。

隔热材料导热系数表征

隔热材料的特点是它的导热系数明显较低(< 0.020 W/ m·K),这是由于一种称为克努森效应的热传导现象。 克努森效应是指当媒介中的孔径小于空气的平均自由程 (约70 nm)时,相对于自由空间中通过空气的传热路 径,通过这种媒介的传热路径会被破坏。⁵这一原理通常 应用于气凝胶的使用,因为气凝胶具有高孔隙率和小孔径 的形态。这种隔热材料的独特性表现为均匀的气凝胶结 构,具有超低(且一致)的导热系数和精确的厚度,从而 产生可靠的高热阻。相对而言,自由空气在室温下的导 热系数为0.026 W/m·K,且随温度的升高呈非线性增加 (50°C时为0.028 W/m·K),⁶这可能导致移动电子产品 在高温下(> 50°C)的热阻变化且不足。

这种隔热材料的贯穿平面导热系数是通过用热流法测量热 阻和用精密厚度法测量材料厚度来确定的。这两个测试 都是在压力设定点为6 psi的情况下进行的。使用由ASTM C518-17改进的热流量计(TA仪器,型号FOX 50)测量稳 态热传输下的热阻。⁷薄的和厚的(层状)样品都要测试 热阻。然后,使用改进的ASTM F36-15方法测试每个样品 (Instron,型号5565)的厚度。⁸用双厚度热阻法计算贯 穿平面导热系数,如等式(4)所示;该方法用于消除热流 法中接触热阻的任何影响。⁹

(4)
$$k = \frac{t_2 - t_1}{R''_2 - R''_1} \left(\frac{W}{m \cdot K}\right)$$

石墨导热系数表征

由于在平面方向上的固有高导热系数和在贯穿平面方向 上相对较低的导热系数,石墨被用于散热。合成石墨厚 度范围从25 μm (~1500 W/m·K)到100 μm (~600 W/ m·K)不等,平面导热系数与厚度呈反比。将高导热系 数石墨薄片分层是在更高厚度下提高热扩散能力的一种 潜在方法,但是这往往会导致热性能不一致以及制造上 的挑战。经验证,高性能厚石墨片具有薄合成石墨的导 热系数,平面导热系数可达1100 W/m·K,单层厚度与 天然石墨相似。每级石墨的贯穿平面导热系数约为 3.5 W/m·K。

我们采用两种仪器对高性能厚石墨片的热扩散率进行 了测试。第一种是Angstrom仪器,由Wagoner等人开 发,用于测量石墨纤维,并以该技术的发明者命名。¹⁰ 在这个仪器中,长而薄的样品的温度在一端呈正弦曲线 变化,并测量在真空环境中沿样品传播所产生的热波。 样品的一端固定在热源上,另一端保持轻微的弹簧拉 力。两个热电偶沿样品的长度接触样品,测量温度波传 播时的振幅和时间延迟。利用振幅、时间延迟和热电偶 的间距来计算样品的热扩散率。另一种仪器是由Bethel 有限公司制造的TA-33 Thermowave Analyzer,用调制 的激光束热脉冲照射正方形样品的顶部表面,并使用位 于样品底部中心的红外探测器检测热脉冲的振幅和相位 的变化。激光频率以及激光束与红外探测器之间的水平 距离可以改变。激光束的频率、信号振幅的变化和相位 的变化可以用来计算热扩散率。然后,可以根据热扩散 率(α)、密度(ρ)和比热容(c_n)计算平面导热系数,如等式 (5)所示。

$$(5) \quad k = \alpha \cdot \rho \cdot c_p \left(\frac{W}{m \cdot K}\right)$$

结果表明,Angstrom仪器可以在较宽的厚度范围内可 靠地测量石墨样品的热扩散率,厚度范围从32μm至 940μm。¹¹但是,在32 μm至168 μm的厚度范围内, Bethel TA-33仪器的测量结果与Angstrom仪器相似,且 变化更小。Bethel TA-33的样品尺寸较小、采用非接触 测量技术且测试周期时间较短,对于厚度不超过168 μm 的石墨样品,它是理想的热扩散率测试仪器。本文采用 Bethel TA-33测试结果计算了100 μm高性能厚石墨样品的 导热系数。

实验测试与模拟

我们通过一系列实验测量了石墨的固有热扩散能力,以及 移动电子产品中隔热石墨复合材料的稳态表面温度和性能 响应。在适用的情况下,测试结果对比于空气和单一成分 的解决方案进行评测测试。

稳态热扩散测试

稳态热扩散测试采用了3x1英寸的石墨条,用施加恒定功 率(4.16 W)的电阻加热器从一端加热。石墨的两端通过热 界面材料(TIM)固定在适当的位置,并与热电偶牢固地接 触。在稳态下测量了沿石墨条的温度下降量。测试装置的 示意图如图4所示。

图4 (a, b, c): 4a(上)显示带有电阻加热器的空测试装置和一 个带有热电偶嵌入TIM的接触块。4B(左下)显示放置在测试装 置中的石墨条,指定高温热电偶和低温热电偶的位置。4c(右 下)显示安装到位的两个接触块,在热电偶TIM和石墨条之间形 成牢固接触。

我们对测试结果进行了分析,采用等式(6)与石墨样品的 固有热扩散能力进行了比较。考虑到厚度的变化,我们将 温度下降量乘以了单个石墨条的厚度(用Instron,型号 5565通过压缩测试进行测量)。

(6)
$$\mathbf{t} \cdot \varDelta \mathbf{T} = \mathbf{t} \cdot (\mathbf{T}_{Hot} - \mathbf{T}_{Cold})$$
 ($\mu \mathbf{m} \cdot \mathbf{K}_{J}$)

温度下降量越低,表示热扩散越大,因为石墨表面的温度 从一端到另一端更均匀。对于不散热的材料,T_{cold}热电偶 将约等于环境温度,从而导致t·ΔT的值升高。

模拟 – 热传导模型

我们在COMSOL中建立了轴对称热传导模型,来模拟典型 智能手机结构中各种热解决方案对稳态T_s和T_i的影响。该 模型由恒定功率热源、单个材料层和设备盖组成;传热系 数和辐射系数可应用于热源的外表面和所有单独的层。我 们定义了所有层的平面和贯穿平面导热系数,并在不同温 度下保持恒定。系统几何形状由热源、材料层和设备盖 的半径和厚度定义。关键模型输出是T_s和热源上的最大T_i 值,沿着盖的径向轮廓显示。图5显示了一般模型设置和 输出的示意图。

图5 (a, b, c): 5a(上)显示COMSOL中轴对称热传导模型设置的示意图,其中已标出关键部件,包括体积热源、材料层和空气 层以及设备盖。5b(中)和5c(下)分别以设备盖表面的热图 和径向温度分布图显示模拟输出。

这个模拟的重点是位于片上系统(SoC)上谷歌Pixel 3XL后 盖的典型几何图形,横截面如图6所示。测量的导热系数 值适用于隔热材料(贯穿平面)和高性能厚石墨。我们估 算空气和玻璃的导热系数值时参考了文献和技术规格书, 使用的导热系数值见表1。对于所有测试的结构,总热间 隙固定在500 μm;我们用空气来填充未填充材料的剩余 总厚度。所有材料解决方案均以350 μm厚度建模,以与 实际测试材料一致。模拟结构详见表2。

图6: 轴对称热传导模型绕"r=0"轴旋转前的二维示意图。 块"a"表示半径为11.3 mm、厚度为1 mm的热源。块"b"表示 一个半径为24.1 mm、总厚度为0.5 mm的可用热间隙。块"c" 表示一个半径为27.6 mm、厚度为0.65 mm的玻璃盖。

表1: 模拟中使用的平面和贯穿平面导热系数值

材料	平面导热系数 (W/m·K)	贯穿平面导热 系数 (W/m·K)
空气	0.028	0.028
玻璃	15	15
高性能厚石墨	1000	3.5
隔热材料	0.018	0.018

表2:从热源到设备盖的可用热间隙(块"b")中模拟的结构

结构	材料厚度 (mm)	结构描述
51 (对照方案)	空气,0.500	
52	隔热材料,0.350 空气,0.150	
53	石墨,0.350 空气,0.150	
S 4	隔热材料,0.175 石墨,0.175 空气,0.150	
S5	石墨,0.175 隔热材料,0.175 空气,0.150	
56	石墨,0.117 隔热材料,0.116 石墨,0.117 空气,0.150	
符号表 	源 空气 阝	扁热材料 石墨

谷歌Pixel 3XL 3DMark压力测试

我们购买了现成的谷歌Pixel 3XL(简称为"Pixel"), 并进行了改造,使其可以在没有热调节的情况下保持恒定 的功率压力。我们之所以选择UL的3DMark - Sling Shot Extreme进行测试,是因为它是一种广受认可的评测标 准,用于对高端智能手机的物理(CPU)性能和图形(GPU) 性能进行评分。¹²为了获得稳态测试结果,我们购买了 3DMark专业版并安装在Pixel上,实现90秒Sling Shot Extreme评测测试的无限循环。所有测试都是在静止空气 环境中进行的,并严格控制环境温度和湿度。可用于测量 的参数包括:通过热电偶测量的表面点温度、通过红外 摄像机(Fluke,型号Ti55)测量的图像、通过内置热敏 电阻测量的内部组件温度(CPU、GPU等),通过Sling Shot Extreme评测测量的CPU和GPU时钟频率以及系统性 能。在开箱状态下,我们用红外成像进行了初始压力测试 (图7)。我们通过TIM确定并选择热点位置来放置热电 偶(图8)。

图7: 谷歌Pixel 3XL屏幕(左)和后盖(右)的红外图像。一个 没有数值的温标显示了颜色和温度之间的方向趋势。表面热点用 白色区域表示。

图8: 谷歌Pixel 3XL屏幕(左)和后盖(右)通过TIM与热电偶 连接。精确放置热电偶以测量表面热点位置的温度。

我们通过加热和断开粘合剂的方式取下Pixel后盖。在后 盖内SoC附近的7个不同位置放置一种适形聚合物(图 9),以确定热解决方案的可用空间,然后重新盖上后 盖,将聚合物压缩到每个位置的现有气隙中。再次取下 后盖,并用卡规在压缩聚合物上测量所有位置的厚度。这 一过程再重复两次,每个位置的所有厚度测量值均取平均 值。厚度平均值详见表3。

图9:取下后盖的谷歌Pixel 3XL。如图所示,七个位置的现有气隙厚度通过适形聚合物测量得出。

表3: 封闭Pixel设备中SoC附近的气隙测量值

位置	平均间隙测量值(mm)
1	0.900
2	0.625
3	0.520
4	0.520
5	0.440
6	0.450
7	0.640

为了避免在位置5和6处受到机械压缩,所有热解决方案 的标称厚度均选为350 μm。用于测试的物理材料包括 110 μm隔热片、110 μm石墨片和5 μm丙烯酸双面胶带。 材料和示例结构如图10所示。

图10:用于测试的物理材料的描述和用粘合剂分层的材料的示例结构。

我们的零件选择了图11所示的几何形状是为了在最大限度 地扩大面积的同时,不影响或尽量减小对内部组件的影 响。为简单起见,只考虑厚度均匀的结构以及形状和面积 相同的层。进一步优化层厚度和尺寸可以实现形状、装配 或功能目标。手机厚度方向的横截面示意图如图12所示。 我们对模拟结果进行了分析,以确定用于Pixel测试的材 料结构。

图11 (a, b): 11a(左)显示了后盖内部件的位置。11b(右)显示 了一个切割成指定几何形状的复合材料样品。部件面积测量值为 1825 mm²。

12b.

图12 (a, b): 12a(上)表示剖面A-A在Pixel中的位置。12b(下)显示设备厚度方向的剖面A-A的示意图。

结果

稳态热扩散测试

我们对合成石墨、天然石墨和高性能石墨等级进行了测试,所有石墨的标称厚度均为100 μm,使用等式(6)获得 t·ΔT值。在随机实验中,每一种石墨都有6个单独的样品 进行测试。结果如图13所示。

图13:稳态热扩散测试t·ΔT的图(平均值和标准偏差),每个石 墨等级n=6。

高性能厚石墨的t·ΔT值最低,平均值约为3100 μm·K。该 值比天然石墨的平均t·ΔT值(~4350 μm·K)低29%,比合成 石墨的平均t·ΔT值(~4650 μm·K)低33%。

模拟 – 热传导模型

通过迭代功率和传热系数可以获得与Pixel设备测试相关 的盖和热源温度。在这个模拟中忽略了表面热辐射系数。 所有测试结构选择的参数如表4所示。

表4: 所有测试结构的模拟输入

	功率	设备盖传热系数	热源传热系数	材料层传热系数	
	(W)	(W/m ² • K)	(W/m ² ∙ K)	(W/m ² • K)	
设定 点值	1.5	20	25	1	

我们对S1到S6的结构进行了模拟,输出见图14,结果详 见表5。同时,我们将所有结构与对照方案结构S1(仅空 气)进行了比较。图15显示了石墨和隔热石墨复合材料结 构(S3、S4、S5和S6)的盖表面温度放大图。

图14:各结构的模拟结果。上面的图显示从设备中心(r = 0 mm) 到设备边缘(r = 27.6 mm)沿设备盖表面的径向温度分布。下面的 图显示设备热源最高温度的单个值。

表5: 盖表面和热源最高温度的模拟结果

结构	盖表面最高温度(°C)	热源最高温度(℃)
S1(对照方案)	46.55	78.82
S 2	44.28	85.43
53	43.79	57.58
S 4	43.54	61.73
S 5	40.52	72.48
S 6	42.96	60.42

图15:图14上面的图中仅为石墨和隔热石墨复合材料结构 (S3、S4、S5和S6)的放大图。

与对照方案(结构51)相比,结构55的最高表面温度降低 值最大。对于测试的所有结构,设备盖表面和热源上的最 高温度都出现在设备中心(r = 0)。当热量从设备中心沿径 向传播时,温度降低。将隔热材料加入系统(结构52) 时,沿表面的温度分布看起来与对照方案的温度分布相 似,但沿表面的每个相应位置的数值都向下移动。这种影 响是由隔热材料的超低导热系数和将热量转向热源的倾向 导致,从而导致T,增加。将石墨和隔热石墨复合材料加入 系统(结构53、54、55和56)时,相对于对照方案,最 高表面温度降低,而径向温度分布增加。出现这种结果是 由于石墨优先沿平面扩散热量,使设备表面的热分布更均 匀。¹³相对于对照方案,这四种结构的模拟T,保持不变或 减小。

谷歌Pixel 3XL 3DMark压力测试

后盖触摸温度研究

我们选择模拟中的结构S1、S2、S3、S5和S6进行Pixel设 备测试,并使用上面图6所述的物理材料构建,设备测试 结构名为D1、D2、D3、D5和D6,其中D1为对照方案。 CPU和GPU频率分别设置为2169.6 MHz和675 MHz。在每 次测试运行结束时记录并验证频率。记录下评测分数以显 示所有测试运行的性能一致性。对于所有测试,静止空气 环境中的环境温度保持在21.6到21.8 ℃之间。所有结构都 在随机实验中进行了三次稳态测试(> 90分钟)。每次 测试运行后,Pixel都会被冷却到空闲操作温度,并打开 来设置下一次测试运行。稳态后盖热点触摸温度和GPU最 高温度如图16所示。后盖的红外图像如图17所示。所有测 试结构的描述、厚度和测量输出(平均值和标准偏差)详 见表6。

图16: Pixel设备中测试的所有结构的后盖热点温度(上)和 GPU最高温度(下)的稳态图(平均值和标准偏差),每种结构 n=3。

图17: Pixel设备上测试的所有结构的后盖热点红外图像放大图。

表6: Pixel设备结果: 后盖触摸温度研究

	盖热点 (°)	[温度 C)	屏幕热 (°	点温度 C)	最高温度(°C)		GPU最高温度 (°C)		Sling Shot Extreme 评测分数	
结构	平均值	标准 偏差	平均值	标准 偏差	平均值	标准 偏差	平均值	标准 偏差	平均值	标准 偏差
D1 (对照方案)	46.7	0.21	49.7	0.25	84.8	0.17	91.9	0.35	4374.3	1.15
D2 (344 μm)	45.4	0.12	50.5	0.10	86.1	0.51	93.0	0.51	4377.7	1.15
D3 (339 μm)	44.6	0.06	50.1	0.10	85.4	0.65	92.6	0.00	4375.7	1.53
D5 (347 μm)	43.5	0.15	49.9	0.26	85.6	0.17	92.5	0.35	4372.3	2.08
D6 (347 μm)	44.0	0.15	49.9	0.26	85.6	0.51	92.5	0.67	4375.0	1.00

所有测试结构都产生了不同的高精度后盖触摸温度,并 且都明显低于对照方案(结构D1)。与模拟结果一致, 结构D5的后盖触摸温度降低值最大,比对照方案温度 降低3.2°C。结构D6、D3和D2分别使后盖触摸温度降低 2.7°C、2.1°C和1.3°C。对于所有测试结构,屏幕温度都比 对照方案温度升高不到1℃,对于复合材料结构,屏幕温 度升高不到0.5°C。对于所有测试结构,CPU和GPU温度 都比对照方案温度升高不到1.5°C,对于复合材料结构, 屏幕温度升高不到1°C。Pixel后盖触摸温度研究结果验证 了模拟研究中所模拟结构的设备表面温度的方向趋势。在 实际设备测试中,CPU和GPU温度相对一致,但模拟中结 温的方向趋势却并非如此。这种差异很可能是由于实际 Pixel设备中SoC附近的热结构的复杂性所致。

系统性能和安全触摸温度研究

我们继续创建了一项研究,用于确定使用隔热石墨复合 材料时系统性能的提高值,我们选择了结构D5进行这项 研究。将Pixel恢复到开箱调节状态,去除所有热解决方 案,只用空气。在稳态电源调节过程中测量了后盖触摸 温度,并记录了三次测试运行。安装结构D5,并将频率 设置为与调节控制运行时的稳态盖温度相匹配。测试的 合适频率分别为CPU 1996.8 MHz和GPU 596 MHz。我 们对两种测试方案的频率、盖热点温度、评测分数和每 秒帧数进行了测量和比较。图18显示了六次测试运行的 所有评测分数、CPU频率和GPU频率与运行时间的平滑 曲线图。稳态盖温度平均值、评测分数和每秒帧数如图 19所示。详情见表7。

图18: Pixel设备中仅空气开箱调节(左)和结构D5固定频率 (右)的评测分数(上)、CPU频率(中)和GPU频率(下)的 瞬态图(平滑),每次测试n = 3。

图19: Pixel设备中仅空气开箱调节和结构D5固定频率的后盖热 点温度(上)、Sling Shot Extreme评测分数(中)和每秒帧数 (下)的稳态图(平均值和标准偏差),每种结构n=3。

表7: Pixel设备结果:系统性能和安全触摸温度

	盖温度(°C)		Sling Shot Extreme 评测分数		每秒帧数	
测试方案	平均值	标准 偏差	平均值	标准 偏差	平均值	标准 偏差
空气 (开箱调节)	38.7	0.15	3401.0	8.19	19.5	0.06
结构D5 (固定频率)	38.7	0.15	3822.7	3.06	21.3	0.00

在21.7 °C的受控测试环境下,开箱调节过程中达到的 稳态盖触摸温度平均值为38.7 °C,此温度与长时间的 UL 62368-1移动电子产品触摸(皮肤)温度有关。在 这个方案中,稳态评测分数平均值和每秒帧数分别为 3401和19.5。将结构D5放置在后盖内时,评测分数增 加到3823,每秒帧数增加到21.3,标志着系统性能提高 约12%,同时保持开箱调节状态下设置的安全表面温度 限制。

总结/结论

将具有超高扩散能力的石墨片和具有超低导热系数的隔热 片相结合,应用于改进的谷歌Pixel 3XL中,可降低表面触 摸(皮肤)温度,提高系统性能,同时最大限度地降低对 设备结温的影响。利用五种不同热结构的设备表面温度实 验结果,验证了采用轴对称热传导模型可以进行类似的模 拟研究。当填充相同的面积和厚度时,隔热石墨复合材料 产生的表面温度降低值超过了空气、单独隔热材料和单独 石墨的表面温度降低值。我们对一种隔热石墨复合材料结 构进行了进一步测试,并与开箱状态进行了比较,结果表 明,在UL评测测试中,系统性能提高了约12%,同时保持 了开箱状态盖表面温度限制。

隔热石墨复合材料在Pixel设备测试和模拟中的结果可以 用这两种材料表现出的特殊热性能来解释。在TA-FOX 50 上,我们用热流法、Instron-5565上用厚度法和双厚度 热阻法测量和计算了隔热材料的贯穿平面导热系数。在 Bethel TA-33上,用热扩散率法测量和计算了高性能厚 石墨的平面导热系数。我们将100 μm高性能厚石墨与 100 μm合成石墨和天然石墨的热扩散能力进行了比较, 并在稳态热扩散测试中进行了实验验证。

高性能隔热石墨复合材料可能在高功率、轻薄型移动电子 结构中具有巨大的应用价值。但需要注意的是,鉴于系统 功率、可用空间和/或其它限制,每个移动电子系统可能 会表现出独特的热挑战。因此,应通过设备特定的模拟和 测试来确定理想设计结构(面积、厚度、方向)。本文的 案例研究展示了一种加强移动电子产品热管理的可能方 法,当两种前沿材料结合在一起时,形成的热解决方案性 能超过两种材料单独使用时的总和。

参考资料

- UL, UL. "62368-1: 2017 Audio/video, information and communication technology equipment - Part 1: Safety requirements." (2017).
- Wagner, Guy, and William Maltz. "Thermal management challenges in the passive cooling of handheld devices." 19th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). IEEE, 2013.
- Wagner, Guy R. "A study of the maximum theoretical power dissipation of tablets under natural convection conditions." 20th International Workshop on Thermal Investigations of ICs and Systems. IEEE, 2014.
- Luo, Zhaoxia, et al. "System thermal analysis for mobile phone." Applied Thermal Engineering 28.14-15 (2008): 1889-1895.
- Bi, C., G. H. Tang, and W. Q. Tao. "Prediction of the gaseous thermal conductivity in aerogels with nonuniform pore-size distribution." Journal of Non-Crystalline Solids 358.23 (2012): 3124-3128.
- Kannuluik, W. G., and E. H. Carman. "The temperature dependence of the thermal conductivity of air." Australian Journal of Chemistry 4.3 (1951): 305-314.
- ASTM C518 17 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus

- ASTM F36 15 Standard Test Method for Compressibility and Recovery of Gasket Materials
- LaserComp, Inc.. "Tests of thin samples stacked (using FOX50 instrument)" Application Note AN-TSS
 © 2008 (October 23).
- Wagoner, G., Skokova, K.A. and Levan, C.D.,
 "Angstrom's Method for Thermal Property Measurements of Carbon Fibers and Composites", The American Carbon Society, CARBON Conference, 1999.
- Beyerle, R., Smalc, M., Kantharaj, R., Taylor, J., Norley, J., "Thermal Diffusivity Characterization of Thick Graphite Foils", 35th Semi-Therm Symposium, 2019.
- 12. 3DMARK® Technical Guide, Underwriters Laboratories, Fremont, CA, 2020.
- 13. Xiong, Yin, et al. "Thermal tests and analysis of thin graphite heat spreader for hot spot reduction in handheld devices." 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. IEEE, 2008.

仅限工业用途。不适用于食品、药品、化妆品或医疗设备等制造、加工或包装作业。

本文所有技术信息和建议都依据戈尔公司先前的经验和/或测试结果。戈尔公司尽力提供这些信息,但对此不承担法律责任。客户应检查具体应用中的适应性和 可用性,因为只有具备了所有必要的操作数据才能判断本产品的性能。上述信息可能会不时变更,不作为产品规格使用。戈尔公司的销售条款适用于戈尔产品的 销售。

GORE、Together, improving life及其设计是W. L. Gore & Associates(戈尔公司)的商标。 ©2020 W. L. Gore & Associates, Inc.